中2数学「1次関数の基本問題」

シェアする

スポンサーリンク

1次関数の式とグラフの特徴に関する練習問題です。定期テストでは、必ず出題されるところです。また1次関数の様々な問題を解くときの基礎となるところですので、しっかりおさえましょう。

座標

  • 座標軸…それぞれ原点で直角に交わる2つの数直線を考える。x軸は、横の数直線。横軸ともいいます。y軸は、縦の数直線。縦軸ともいいます。
  • 原点O…座標軸の交点。
  • 座標平面…座標軸の書かれている平面。
スポンサーリンク

点の座標

点の位置を1組2つの数で表します。

  1. 点Pからx軸、y軸に垂直な直線をひいたとき、x軸と交わる点を目もりをPのx座標、y軸と交わる点の目もりをPのy座標といいます。
  2. Pのx座標がa、y座標がbのとき、(a,b)と書き、Pの座標といいます。P(a,b)とも書きます。

点の位置の関係と座標

P(x,y)とする。

  • Pをx軸について折り返すと、(x,-y) → x軸に対称
  • Pをy軸について折り返すと、(-x,y) → y軸に対称
  • Pを原点Oについて180°回転すると、(-x,-y) → 原点Oに対称

1次関数の座標

与えられた値またはわかっている値をそれぞれ代入することで、求まることが多い。

1次関数

2つの変数x、yについて、yがxの1次式で表されるとき、yはxの1次関数であるといいます。1次関数は、一般的に「y=ax+b」とあらわされます。1年生で履修した比例式「y=ax」も1次関数であり、b=0の特別な式と理解できます。

1次関数の式y=ax+b

  • a=比例定数=変化の割合=yの増加量/xの増加量
  • b=切片

1次関数の式を求めるポイント

1次関数y=ax+bにおいて、

  • aの値がわかるとき → 傾き、変化の割合、平行な直線がわかっている場合
  • bの値がわかるとき → 切片がわかっている場合

以上がわかっているときは、まずあてはめたのち、次に与えられている条件をあてはめていきます。またa,bの値がわからない2点が与えられている問題は、その2点をy=ax+bにそれぞれ代入して、連立方程式で解くか、先に、傾きをxの増加量/yの増加量を利用して出して、解くかのいずれかです。

●例題
yがxの1次関数で、そのグラフが点(3,1)を通り、傾きが2であるとき、この1次関数を求めなさい。

<解法>

  1. 1次関数なので、y=ax+bとおく。
  2. 傾きが2なので、y=2x+bとおける。
  3. (3,1)を通るので、代入。1=2×3+b
  4. これを解くと、b=-5
  5. よって、y=-2x-5 となる。

1次関数の変化の割合

xの増加量に対するyの増加量の割合を「変化の割合」といいます。1次関数y=ax+bでは変化の割合は一定で、aに等しくなります。

  • 1次関数y=ax+bの変化の割合=yの増加量/xの増加量

「きはじ」の要領で yの増加量=変化の割合(傾き)×xの増加量

1次関数の変化の割合の例題

1次関数y=2x+1について、次の表を完成して、xの値が1から3まで増加したときの、yの増加量/xの増加量を求めると

<表>

-3 -2 -1 0 1 2 3
-5 -3 -1 1 3 5 7

x=1のとき、y=2x1+1=3
x=3のとき、y=2×3+1=7

したがって、xの増加量/yの増加量=(7-3)/(3-1)=2

1次関数の変域

  • 変数…いろいろな値をとることができる文字。xやyを使います。これに対して、決まった値を示す数や文字を定数といいます。aやbを使います。
  • 変域…変数のとる値の範囲を変域といいます。一般的に、変域は、不等号を使って表します。

<例>

  • ことば…xは3以上、7より小さい(7未満)
  • 不等号…3≦x<7

変域の例題

1次関数y=x-1について、xの変域が-2≦x≦6のとき、yの変域を求めよ。

x=-2のとき、y=-2-1=-3
x=6のとき、y=6-1=5

よって、-3≦y≦5となる。

一次関数の変域ポイント

それぞれ、代入して、小さい値を左、大きい値を右にし、不等号の向きに気をつけましょう。特に、傾きがマイナスのときに、注意が必要です。

座標を求める練習問題

次に問いに答えなさい。

  1. 2点(5,5)(2,5)の間の距離を求めよ。
  2. 2点(2,5)(2,8)の間の距離を求めよ。
  3. 2点(5,5)(-2,5)の間の距離を求めよ。
  4. 2点(2,5)(2,-8)の間の距離を求めよ。
  5. 2点(a+2,5)(a,5)の間の距離を求めよ。ただし、a>0とする。
  6. 1次関数y=2x+4において、x=1のときの、yの値を求めなさい。
  7. 1次関数y=-2x+4において、y=2のときの、xの値を求めなさい。
  8. 点(t、6)が、直線y=2x+4上にあるとき、tの値を求めなさい。
  9. 点(8、t)が、直線y=2x+4上にあるとき、tの値を求めなさい。
  10. 点(4、10)が、直線y=2x+t上にあるとき、tの値を求めなさい。

座標を求める 解答

  1. 3
  2. 3
  3. 7
  4. 13
  5. 2
  6. 6
  7. 1
  8. 1
  9. 20
  10. 2

1次関数のグラフの特徴

  • y=ax+bのグラフは、y=axのグラフをy軸の正の方向にbだけ平行に移動させた直線です。
  • a>0のとき、xが増加すれば、yも増加する。
  • a<0のとき、xが増加すれば、yを減少する。

1次関数のグラフ 練習問題

次のA~Dの一次関数について、次の問いに記号で答えなさい。
1次関数

  1. グラフが右上がりの直線になるのは、直線Aとどれか。
  2. グラフが右下がりになる直線は、直線Bとどれか。
  3. グラフがy軸の正の部分と交わるのは、直線Bとどれか。
  4. グラフがy軸の負の部分と交わるのは、直線Aとどれか。
  5. xが増加すると、yは減少するのは、直線Bとどれか。
  6. xが増加すると、yは増加するのは、直線Aとどれか。
  7. 変化の割合が常に2である直線はどれか。
  8. グラフがy軸の2と交わるのは、直線はどれか。
  9. 切片のy座標が一番小さい直線はどれか。
  10. xの値2のとき、yの値が3となる直線はどれか。

解答

2直線の交点の求め方

2直線の交点の座標は、2つの直線の式を組にした連立方程式の解いて求められます。

2直線の交点 練習問題

次の問いに答えよ。

  1. 直線y=2x+6とy軸との交点の座標を求めよ。
  2. 直線y=2x+6とx軸との交点の座標を求めよ。
  3. 直線y=-2x+4とy軸との交点の座標を求めよ。
  4. 直線y=-2x+4とx軸との交点の座標を求めよ。
  5. 直線 とy軸との交点の座標を求めよ。
  6. 直線 とx軸との交点の座標を求めよ。
  7. 2直線y=-x+5とy=2x-1との交点の座標を求めよ。
  8. 2直線y=-x+5とy=x-1との交点の座標を求めよ。
  9. 2直線y=-x+13とy=6x+6との交点の座標を求めよ。
  10. 2直線y=-2x+1とy=-x+3との交点の座標を求めよ。

2直線の交点 解答

  1. (0,6)
  2. (-3,0)
  3. (0,4)
  4. (2,0)
  5. (0,4)
  6. (8,0)
  7. x=2、y=3
  8. x=3、y=2
  9. x=1、y=12
  10. x=-2、y=5

直線の式の求める練習問題

  1. 傾きが2、切片が4である1次関数の式を求めよ。
  2. 変化の割合が4、切片が2である1次関数の式を求めよ。
  3. 直線y=3xと平行で、切片が2である1次関数の式を求めよ。
  4. 傾き2で、点(0,3)を通る直線の式を求めよ。
  5. 傾き-2で、x=0のとき、y=5を通る直線の式を求めよ。
  6. 変化の割合2で、点(0,3)を通る直線の式を求めよ。
  7. 直線y=3x+5と平行で、点(0,2)を通る直線の式を求めよ。
  8. 直線y=5x+5と平行で、点(0,-3)を通る直線の式を求めよ。
  9. 点(0,6)を通り、傾きが3である直線の式を求めよ。
  10. xが2増加すると、yが6増加し、切片が2である1次関数の式を求めよ。
  11. 2点(1,3)、(4,6)を通る直線の式を求めよ。
  12. 2点(1,1)、(3,-7)を通る直線の式を求めよ。
  13. 2点(3,5)、(4,8)を通る直線の式を求めよ。
  14. 2点(1,3)、(-2,9)を通る直線の式を求めよ。
  15. 傾きが2で点(2,1)を通る直線の式を求めよ。
  16. 傾きが-3で点(2,4)を通る直線の式を求めよ。
  17. 切片が2で点(2,10)を通る直線の式を求めよ。
  18. 切片が6で点(2,0)を通る直線の式を求めよ。
  19. 変化の割合が2で点(2,1)を通る直線の式を求めよ。
  20. 1次関数y=-3x+6と平行で点(2,4)を通る直線の式を求めよ。

直線の式の求める解答

  1. y=2x+4
  2. y=4x+2
  3. y=3x+2
  4. y=2x+3
  5. y=-2x+5
  6. y=2x+3
  7. y=3x+2
  8. y=5x-3
  9. y=3x+6
  10. y=3x+2
  11. y=x+2
  12. y=-4x+5
  13. y=3x-4
  14. y=-2x+5
  15. y=2x-3
  16. y=-3x+10
  17. y=4x+2
  18. y=-3x+6
  19. y=2x-3
  20. y=-3x+10

1次関数の変化の割合の練習問題

次の問いに答えなさい。

  1. 1次関数y=3x+6で、xの値が1から4まで増加したときの変化の割合を求めなさい。
  2. 1次関数y=-2x+6で、xの値が1から4まで増加したときの変化の割合を求めなさい。
  3. 1次関数y=4x+5で、xの増加量が5であるときの変化の割合を求めなさい。
  4. 1次関数y=4x+6で、xの値が1から4まで増加したときのxの増加量を求めなさい。
  5. 1次関数y=4x-5で、xの値が-1から4まで増加したときのxの増加量を求めなさい。
  6. 1次関数y=2x+8で、xの値が1から4まで増加したときのyの増加量を求めなさい。
  7. 1次関数y=-2x+8で、xの値が1から3まで増加したときのyの増加量を求めなさい。
  8. 1次関数y=3x+2で、xの増加量が5であるときのyの増加量を求めなさい。
  9. 1次関数y=ax+4で、xの増加量が5であるときのyの増加量が10である。このとき、aの値を求めなさい。
  10. 1次関数y=ax-2で、xの値が-1から3まで増加したときのyの増加量が8である。このとき、aの値を求めなさい。

1次関数の変化の割合の解答

  1. 3
  2. -2
  3. 4
  4. 3
  5. 5
  6. 6
  7. -4
  8. 15
  9. 2

1次関数の変域の練習問題

次の問いに答えよ。

  1. 1次関数y=3x+2で、xの変域が1≦x≦3のとき、yの変域を求めよ。
  2. 1次関数y=x+5で、xの変域が-1≦x≦2のとき、yの変域を求めよ。
  3. 1次関数y=-2x+4で、xの変域が2≦x≦4のとき、yの変域を求めよ。
  4. 1次関数y=-4x+2で、xの変域が-1≦x≦2のとき、yの変域を求めよ。
  5. 1次関数y=2x+1で、xの変域がx≦2のとき、yの変域を求めよ。
  6. 1次関数y=-3x+5で、xの変域がx≦2のとき、yの変域を求めよ。
  7. 1次関数y=3x+2で、xの変域が1<x≦3のとき、yの変域を求めよ。
  8. 1次関数y=x+5で、xの変域が-1≦x<2のとき、yの変域を求めよ。
  9. 1次関数y=-2x+4で、xの変域が2<x≦4のとき、yの変域を求めよ。
  10. 1次関数y=-4x+2で、xの変域が-1≦x<2のとき、yの変域を求めよ。

一次関数変域の解答

  1. 5≦y≦11
  2. 4≦y≦7
  3. -4≦y≦0
  4. -6≦y≦6
  5. y≦5
  6. y≧-1
  7. 5<y≦11
  8. 4≦y<7
  9. -4≦y<0
  10. -6<y≦6
スポンサーリンク
スポンサーリンク

シェアする

スポンサーリンク



トップへ戻る