▶ YouTube動画「トイトク」定期テスト・高校入試対策

中学数学「場合の数・確率の定期対策テスト問題」

スポンサーリンク

中学数学「確率の練習問題」です。定期テスト対策として、典型問題を解いて本番に備えよう。

スポンサーリンク

確率の練習問題一覧

・場合の数
・2つのさいころを投げたときの確率
・硬貨を投げたときの確率
・くじを引くときの確率
・2枚のカードの組を取り出す確率
についての対策テストとなっています。

【対策問題】場合の数

次の問いに答えなさい。

  1. 1つのさいころを1回投げるとき、起こりうる場合は全部で何通りあるか。
  2. 1つのさいころを1回投げるとき、6の約数の目が出る場合は何通りあるか。
  3. 1つのさいころを1回投げるとき、6の約数の目が出る確率を求めなさい。
  4. 1から20までの数を1つずつ記入した20枚のカードを1枚ひくとき、ひいた数が4の倍数である場合は何通りであるか。
■場合の数と確率
起こりうる場合が、すべてでn通り(=場合の数)あり、そのどれが起こることも同様に確からしいとする。ことがらAの起こる場合がn通りあるとき、Aの起こる確率pはp=a/nとなります。つぎに、「同様に確からしい」ということをみていきましょう。
■同様に確からしい
さいころの目の出方は、1から6までの6通りあり、どの目が出ることも同じ程度に期待されます。このようなとき、どの目が出ることも同様にに確からしいといいます。

【解答】

  1. 6
  2. 4
  3. 2/3
  4. 5

【対策問題】2つのさいころ

次の問いに答えよ。

  1. 2個のサイコロa,b を同時に投げるとき、出る目の数が同じになる確率を求めよ。
  2. 2個のサイコロa,b を同時に投げるとき、出る目の和が4になる確率を求めよ。
  3. 2個のサイコロa,b を同時に投げるとき、出る目の積が6になる確率を求めよ。
  4. 2個のサイコロa,b を同時に投げるとき、出る目の和が3の倍数になる確率を求めよ。
  5. 2個のサイコロa,b を同時に投げるとき、出る目の積が奇数になる確率を求めよ。
  6. 2個のサイコロa,b を同時に投げるとき、出る目の和が13 になる確率を求めよ。
  7. 2個のサイコロa,b を同時に投げるとき、出る目の和が7 になる確率を求めよ。
  8. 2個のサイコロa,b を同時に投げるとき、a-b=1となる確率を求めよ。
  9. 2個のサイコロa,b を同時に投げるとき、aとbの差が2となる確率を求めよ。
  10. 2個のサイコロa,b を同時に投げるとき、2a=bとなる確率を求めよ。
■サイコロの確率の求め方
2つのサイコロを投げて求める確率や、1つのサイコロを連続2回の確率の問題では、『表』を利用して、該当するところにチェックを入れて解いていくのが一般的です。もちろん、樹形図を利用して解いてもかまいません。
さいころ
■サイコロの場合の数
サイコロをn回振ったときの場合の数は、6となります。たとえば、サイコロを3回降ると、63=6×6×6=216通りとなります。
■ことがらAの起こらない確率
ことがらAの起こる確率をPとすると、Aの起こらない確率=1-P
■2つのさいころを同時に投げるときの例題
2つのさいころを同時に投げるとき、次の確率をもとめなさい。

  1. 出る目の数の和が10になる確率。
  2. 出る目の数の和が10以上になる確率
  3. 出る目の数の和だ10以上にならない確率

(解説・解答)
2つのさいころを、A,Bとすると、目の出方は6×6=36通り。

  1. 表を使って、出る目の和が10になるところを印をいれていくと、3通りある。よって、3/36=1/12が答えとなります。
  2. 表を使って、出る目の和が10以上にになるところを印をいれていくと、6通りある。よって、6/36=1/6が答えとなります。
  3. 2の答えを利用して、(10以上になる確率)+(10以上にならない確率)=1なので、1-1/6=5/6が答えとなります。

【解答】

  1. 1/6
  2. 1/12
  3. 1/9
  4. 1/3
  5. 1/4
  6. 0
  7. 1/6
  8. 5/36
  9. 2/9
  10. 1/12

【対策問題】硬貨

次の問いに答えよ。

  1. 2枚のコインを同時に投げるとき、2枚とも表になる確率を求めよ。
  2. 2枚のコインを同時に投げるとき、2枚とも裏になる確率を求めよ。
  3. 2枚のコインを同時に投げるとき、1枚が裏になる確率を求めよ。
  4. 2枚のコインを同時に投げるとき、少なくとも1枚が裏になる確率を求めよ。
  5. 3枚の硬貨を同時に投げるとき、3枚とも表になる確率を求めよ。
  6. 3枚の硬貨を同時に投げるとき、3枚とも裏になる確率を求めなさい。
  7. 3枚の硬貨を同時に投げるとき、1枚が表になる確率を求めなさい。
  8. 3枚の硬貨を同時に投げるとき、少なくとも1枚が表になる確率を求めなさい。
  9. 4枚の硬貨を同時に投げるとき、4枚とも表になる確率を求めよ。
  10. 4枚の硬貨を同時に投げるとき、少なくとも1枚が表になる確率を求めなさい。
■コイン・硬貨の確率の求め方
コイン・硬貨の確率は、『樹形図』を用いて解いていくのが一般的です。
硬貨たとえば、2つのコインは、4通り  3つのコインの場合は、8通りとなる。

■コイン・硬貨の場合の数
樹形図を書いていくとわかりますが、コイン・硬貨の場合の数は、n回投げるとき、n2となります。4回投げると、24=16通りとなります。
■コイン・硬貨の確率の例題
3枚のコイン(硬貨)を同時に投げる時、2枚が表で、1枚が裏の出る確率を求めよ。(解説・解答)
硬貨
樹形図より、場合の数は、8通りで、2枚が表で、1枚が裏となるのは3通りなので、答えは、3/8となります。

【解答】

  1. 1/4
  2. 1/4
  3. 1/2
  4. 3/4
  5. 1/8
  6. 1/8
  7. 3/8
  8. 7/8
  9. 1/16
  10. 15/16

【対策問題】くじ

次の問いに答えよ。

  1. 当たりが2本、はずれが3本入っているくじがある。このくじを同時に2本ひくとき、2本とも当たりである確率を求めよ。
  2. 当たりが2本、はずれが3本入っているくじがある。2本ともはずれである確率を求めよ。
  3. 当たりが2本、はずれが3本入っているくじがある。少なくとも1本は当たりである確率を求めよ。
  4. 当たりが3本、はずれが2本入っているくじがある。このくじを同時に2本ひくとき、2本とも当たりである確率を求めよ。
  5. 当たりが3本、はずれが2本入っているくじがある。このくじを同時に2本ひくとき少なくとも1本は当たりである確率を求めよ。
  6. 6本中に当たりが3本入っているくじがある。このくじをまずAが引いて次にBが引くとき、Aが当たる確率を求めよ。
  7. 6本中に当たりが3本入っているくじがある。このくじをまずAが引いて次にBが引くとき、AがはずれてBが当たる確率を求めなさい。
  8. 6本中に当たりが3本入っているくじがある。このくじをまずAが引いて次にBが引くとき、AもBも当たる確率を求めなさい。
  9. 6本のうち、2本の当たりが入っているくじがある。この6本のくじの中から、同時に2本のくじをひくとき、1本だけ当たりである確率を求めよ。
  10. 2本の当たりくじが入っている5本のくじがある。このくじを,先にAさんが1本引き,これをもどさずに,次にBさんが1本引くとき,AさんとBさんのうち,どちらか1人が当たりくじを引く確率を求めよ。
■くじの確率の求め方
樹形図が基本でしょう。その際には、「辞書的に配列して行う」とわかりやすいと思います。たとえば以下のようになります。5本のうち、2本があたりのくじがある。ときたら、あたりくじ a,b はずれくじ c,d,eとアルファベット(辞書的)に配列して樹形図を書く。2本の当たりをa,bとし、残りをc,d,e,fとする。そうすると樹形図は、

くじ
1本だけ当たりは、a-c a-d a-e a-f b-c b-d b-e b-fの8通り

上の樹形図より、場合の数は、15通りで、1本だけ当たりであるのは8通りなので、8/15となる。

【解答】

  1. 1/10
  2. 3/10
  3. 7/10
  4. 3/10
  5. 9/10
  6. 1/2
  7. 3/10
  8. 1/5
  9. 8/15
  10. 3/15

【対策問題】カード

次の問いに答えなさい。

  1. 1から4までの4つの数字が書かれたカードがそれぞれ1枚ずつある。このうち2枚を取り出して、2けたの数を作るとき2けたの整数が偶数になる確率を求めよ。
  2. 1から4までの4つの数字が書かれたカードがそれぞれ1枚ずつある。このうち2枚を取り出して、2けたの数を作るとき2けたの整数が30 より小さい確率を求めよ。
  3. 1から4までの4つの数字が書かれたカードがそれぞれ1枚ずつある。このうち2枚を取り出して、2けたの数を作るとき2けたの数が4の倍数になる確率を求めよ。
  4. 1から4までの4つの数字が書かれたカードがそれぞれ1枚ずつある。このうち2枚を取り出して、2けたの数を作るとき2けたの数が3の倍数になる確率を求めよ。
  5. 2,4,5,7,9の5枚のカードから2枚を引くとき2枚の数の和が11になる確率を求めよ。
  6. 2,4,5,7,9の5枚のカードから2枚を引くとき2枚の数の積が偶数になる確率を求めよ。
  7. 2,4,5,7,9の5枚のカードから2枚を引くとき2枚の数の和が偶数になる確率を求めよ。
  8. 2,4,5,7,9の5枚のカードから2枚を引くとき2枚の数の和が10以下になる確率を求めよ。
  9. 0、1、2、3、4、5の数字が1つずつ書かれた6枚のカ-ドから、同時に2枚を取り出すとき、取り出した2枚のカ-ドに書かれている数の積が0となる確率を求めよ。
  10. 1から6までの数字が1つずつ書かれた6個のボールが袋の中に入っている。袋からボールを一度に2個取り出すとき、書かれた数の和が8である確率を求めよ。
■カードの確率の求め方
大きく4つのパターンがあります。順番が関係する(数字をつくる)=「順列」、順番が関係ない(数字をつくらない)=「組み合わせ」に注視しましょう。・「1回戻し」+「数字を作る」
・「1回戻し」+「数字は作らない」
・「同時または続けて」+「数字を作る」
・「同時または続けて」+「数字を作らない」

【解答】

  1. 1/2
  2. 1/2
  3. 1/4
  4. 1/3
  5. 1/5
  6. 7/10
  7. 2/5
  8. 2/5
  9. 1/3
  10. 2/15
中学数学
スポンサーリンク
中学数学の対策記事一覧
中学数学の定期テスト対策・高校入試対策の記事を一覧にしています。ご利用ください。

コメント

テキストのコピーはできません。