中3数学の「相似の証明」の解き方・仕方のまとめです。代表的なパターンの例題を見ながら、相似の証明についてみていきます。入試でも頻出度の高いところです。確実に習得しましょう。それでは、中3数学の「相似の証明」の解き方・仕方のまとめをみていきましょう。
相似の証明
図には、∠A=90°である直角三角形ABCでAからBCに垂線ADをひきます。このとき、△ABCと△DBAであることを証明せよ。
△ABCと△DBAにおいて
∠BAC=∠BDA=90°…①
∠Bは共通…②
①②より、2組の角がそれぞれ等しいので、
△ABC∽△DBA
2辺の比が等しいことを証明する場合。
図には、∠A=90°である直角三角形ABCでAからBCに垂線ADをひきます。このとき、BC:BA=BA:BDであることを証明せよ。
△ABCと△DBAにおいて
∠BAC=∠BDA=90°…①
∠Bは共通…②
①②より、2組の角がそれぞれ等しいので、
△ABC∽△DBA
相似な図形の対応をする辺の比は等しいから
BC:BA=BA:BD
よくある間違い
先ほどの問題を例にとると
∠BAC=∠BDA=90°…①
∠ACB=∠DAB…②
①②より2組の角がそれぞれ等しいので、
△ABC∽△DBA
ここで、∠ACB=∠DABは、条件にないので、使用することはできません。条件にないものは、使えない!これは覚えておきましょう。
相似の練習問題
上の図の△ABCで、点B、Cから辺AC,ABにそれぞれ垂線BD,CEをひくとき、△ABD∽△ACEになることを証明しなさい。
相似の解答
△ABDと△ACEにおいて
∠BDA=CEA=90°…①
∠Aは共通…②
①②より2組の角がそれぞれ等しいので、
△ABD∽△ACE
共通する弧の円周角を用いた相似の証明代表問題1
図のように、円Oの円周上に5点A,B,C,D,Eがある。BE//CDで、BE上にFとGがある。このとき、△ABG∽△EDGであることを証明せよ。
解答1
△ABGと△EDGにおいて、
対頂角より ∠AGB=∠EGD…①
弧BDに対する円周角より ∠BAG=∠DEG…②
①②より、2組の角がそれぞれ等しいので
△ABG∽△EDG
共通する弧の円周角を用いた相似の証明代表問題2
図のように、円Oの円周上に点A,B,Cを結んでできる△ABCがある∠ABCの二等分線と辺AC,円Oとの交点をそれぞれD,Eとする。このとき△DCE∽△CBEを証明しなさい。
解答2
△DCEと△CBEにおいて、
共通の角より ∠DEC=∠CEB…①
仮定より ∠CBE=∠ABD…②
弧AEに対する円周角より ∠DCE=∠ABD…③
②③より、∠CBE=∠DCE…④
①④より、2組の角がそれぞれ等しいので
△DCE∽△CBE
共通する弧の円周角を用いた相似の証明代表問題3
図は、線分ABを直径とする円Oがある。弧AB上に点Eをとり、∠ABEの二等分線と円O,線分AEとの交点をそれぞれF,Gとしたものです。このとき、△EFB∽△GFEであることを証明せよ。
解答3
△EFBと△GFEにおいて、
共通の角より ∠EFB=∠GFE…①
仮定より ∠EBF=∠ABF…②
弧AFに対する円周角より ∠GEF=∠ABF…③②③より、∠EBF=∠GEF…④
①④より、2組の角がそれぞれ等しいので
△EFB∽△GFE
以上が、中3数学の「相似の証明」の解き方・仕方のまとめです。三角形の相似条件は、「3組の辺の比がすべて等しい。」「2組の辺の比とその間の角がそれぞれ等しい。」「2組の角がそれぞれ等しい。」なので、まずは、「2組の角がそれぞれ等しい。」が使えないかということから、証明問題は解き始めます。今回は、いずれも、「2組の角がそれぞれ等しい。」だったように、非常に、「2組の角がそれぞれ等しい。」という条件になることが多いです。
コメント